3.4.65 \(\int \frac {1}{\sqrt {1+\cos (c+d x)} \sqrt {\sec (c+d x)}} \, dx\) [365]

3.4.65.1 Optimal result
3.4.65.2 Mathematica [C] (verified)
3.4.65.3 Rubi [A] (verified)
3.4.65.4 Maple [A] (verified)
3.4.65.5 Fricas [A] (verification not implemented)
3.4.65.6 Sympy [F]
3.4.65.7 Maxima [C] (verification not implemented)
3.4.65.8 Giac [F]
3.4.65.9 Mupad [F(-1)]

3.4.65.1 Optimal result

Integrand size = 23, antiderivative size = 94 \[ \int \frac {1}{\sqrt {1+\cos (c+d x)} \sqrt {\sec (c+d x)}} \, dx=-\frac {\sqrt {2} \arcsin \left (\frac {\sin (c+d x)}{1+\cos (c+d x)}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{d}+\frac {2 \arcsin \left (\frac {\sin (c+d x)}{\sqrt {1+\cos (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{d} \]

output
2*arcsin(sin(d*x+c)/(1+cos(d*x+c))^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2 
)/d-arcsin(sin(d*x+c)/(1+cos(d*x+c)))*2^(1/2)*cos(d*x+c)^(1/2)*sec(d*x+c)^ 
(1/2)/d
 
3.4.65.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.55 (sec) , antiderivative size = 171, normalized size of antiderivative = 1.82 \[ \int \frac {1}{\sqrt {1+\cos (c+d x)} \sqrt {\sec (c+d x)}} \, dx=\frac {i \sqrt {2} e^{-\frac {1}{2} i (c+d x)} \sqrt {\frac {e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \sqrt {1+e^{2 i (c+d x)}} \left (-\text {arcsinh}\left (e^{i (c+d x)}\right )+\sqrt {2} \text {arctanh}\left (\frac {-1+e^{i (c+d x)}}{\sqrt {2} \sqrt {1+e^{2 i (c+d x)}}}\right )+\text {arctanh}\left (\sqrt {1+e^{2 i (c+d x)}}\right )\right ) \cos \left (\frac {1}{2} (c+d x)\right )}{d \sqrt {1+\cos (c+d x)}} \]

input
Integrate[1/(Sqrt[1 + Cos[c + d*x]]*Sqrt[Sec[c + d*x]]),x]
 
output
(I*Sqrt[2]*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c + d*x)))]*Sqrt[1 + E^((2* 
I)*(c + d*x))]*(-ArcSinh[E^(I*(c + d*x))] + Sqrt[2]*ArcTanh[(-1 + E^(I*(c 
+ d*x)))/(Sqrt[2]*Sqrt[1 + E^((2*I)*(c + d*x))])] + ArcTanh[Sqrt[1 + E^((2 
*I)*(c + d*x))]])*Cos[(c + d*x)/2])/(d*E^((I/2)*(c + d*x))*Sqrt[1 + Cos[c 
+ d*x]])
 
3.4.65.3 Rubi [A] (verified)

Time = 0.53 (sec) , antiderivative size = 75, normalized size of antiderivative = 0.80, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.391, Rules used = {3042, 4710, 3042, 3256, 3042, 3253, 223, 3260, 223}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sqrt {\cos (c+d x)+1} \sqrt {\sec (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )+1} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4710

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\sqrt {\cos (c+d x)}}{\sqrt {\cos (c+d x)+1}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )+1}}dx\)

\(\Big \downarrow \) 3256

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\int \frac {\sqrt {\cos (c+d x)+1}}{\sqrt {\cos (c+d x)}}dx-\int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {\cos (c+d x)+1}}dx\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )+1}}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )+1}}dx\right )\)

\(\Big \downarrow \) 3253

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (-\int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )+1}}dx-\frac {2 \int \frac {1}{\sqrt {1-\frac {\sin ^2(c+d x)}{\cos (c+d x)+1}}}d\left (-\frac {\sin (c+d x)}{\sqrt {\cos (c+d x)+1}}\right )}{d}\right )\)

\(\Big \downarrow \) 223

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 \arcsin \left (\frac {\sin (c+d x)}{\sqrt {\cos (c+d x)+1}}\right )}{d}-\int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )+1}}dx\right )\)

\(\Big \downarrow \) 3260

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\sqrt {2} \int \frac {1}{\sqrt {1-\frac {\sin ^2(c+d x)}{(\cos (c+d x)+1)^2}}}d\left (-\frac {\sin (c+d x)}{\cos (c+d x)+1}\right )}{d}+\frac {2 \arcsin \left (\frac {\sin (c+d x)}{\sqrt {\cos (c+d x)+1}}\right )}{d}\right )\)

\(\Big \downarrow \) 223

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 \arcsin \left (\frac {\sin (c+d x)}{\sqrt {\cos (c+d x)+1}}\right )}{d}-\frac {\sqrt {2} \arcsin \left (\frac {\sin (c+d x)}{\cos (c+d x)+1}\right )}{d}\right )\)

input
Int[1/(Sqrt[1 + Cos[c + d*x]]*Sqrt[Sec[c + d*x]]),x]
 
output
(-((Sqrt[2]*ArcSin[Sin[c + d*x]/(1 + Cos[c + d*x])])/d) + (2*ArcSin[Sin[c 
+ d*x]/Sqrt[1 + Cos[c + d*x]]])/d)*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]
 

3.4.65.3.1 Defintions of rubi rules used

rule 223
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt 
[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && NegQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3253
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.) 
*(x_)]], x_Symbol] :> Simp[-2/f   Subst[Int[1/Sqrt[1 - x^2/a], x], x, b*(Co 
s[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, d, e, f}, x] && E 
qQ[a^2 - b^2, 0] && EqQ[d, a/b]
 

rule 3256
Int[Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(a_) + (b_.)*sin[(e_.) 
 + (f_.)*(x_)]], x_Symbol] :> Simp[d/b   Int[Sqrt[a + b*Sin[e + f*x]]/Sqrt[ 
c + d*Sin[e + f*x]], x], x] + Simp[(b*c - a*d)/b   Int[1/(Sqrt[a + b*Sin[e 
+ f*x]]*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] & 
& NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3260
Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f 
_.)*(x_)]]), x_Symbol] :> Simp[-Sqrt[2]/(Sqrt[a]*f)   Subst[Int[1/Sqrt[1 - 
x^2], x], x, b*(Cos[e + f*x]/(a + b*Sin[e + f*x]))], x] /; FreeQ[{a, b, d, 
e, f}, x] && EqQ[a^2 - b^2, 0] && EqQ[d, a/b] && GtQ[a, 0]
 

rule 4710
Int[(csc[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Csc[a 
+ b*x])^m*(c*Sin[a + b*x])^m   Int[ActivateTrig[u]/(c*Sin[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u, x]
 
3.4.65.4 Maple [A] (verified)

Time = 4.45 (sec) , antiderivative size = 108, normalized size of antiderivative = 1.15

method result size
default \(\frac {\sqrt {2+2 \cos \left (d x +c \right )}\, \left (\arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right ) \sqrt {2}+2 \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right )\right ) \sqrt {2}}{2 d \left (1+\cos \left (d x +c \right )\right ) \sqrt {\sec \left (d x +c \right )}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\) \(108\)

input
int(1/sec(d*x+c)^(1/2)/(1+cos(d*x+c))^(1/2),x,method=_RETURNVERBOSE)
 
output
1/2/d*(2+2*cos(d*x+c))^(1/2)*(arcsin(cot(d*x+c)-csc(d*x+c))*2^(1/2)+2*arct 
an(tan(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)))/(1+cos(d*x+c))/sec(d*x+c 
)^(1/2)/(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*2^(1/2)
 
3.4.65.5 Fricas [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 70, normalized size of antiderivative = 0.74 \[ \int \frac {1}{\sqrt {1+\cos (c+d x)} \sqrt {\sec (c+d x)}} \, dx=\frac {\sqrt {2} \arctan \left (\frac {\sqrt {2} \sqrt {\cos \left (d x + c\right ) + 1} \sqrt {\cos \left (d x + c\right )}}{\sin \left (d x + c\right )}\right ) - 2 \, \arctan \left (\frac {\sqrt {\cos \left (d x + c\right ) + 1} \sqrt {\cos \left (d x + c\right )}}{\sin \left (d x + c\right )}\right )}{d} \]

input
integrate(1/sec(d*x+c)^(1/2)/(1+cos(d*x+c))^(1/2),x, algorithm="fricas")
 
output
(sqrt(2)*arctan(sqrt(2)*sqrt(cos(d*x + c) + 1)*sqrt(cos(d*x + c))/sin(d*x 
+ c)) - 2*arctan(sqrt(cos(d*x + c) + 1)*sqrt(cos(d*x + c))/sin(d*x + c)))/ 
d
 
3.4.65.6 Sympy [F]

\[ \int \frac {1}{\sqrt {1+\cos (c+d x)} \sqrt {\sec (c+d x)}} \, dx=\int \frac {1}{\sqrt {\cos {\left (c + d x \right )} + 1} \sqrt {\sec {\left (c + d x \right )}}}\, dx \]

input
integrate(1/sec(d*x+c)**(1/2)/(1+cos(d*x+c))**(1/2),x)
 
output
Integral(1/(sqrt(cos(c + d*x) + 1)*sqrt(sec(c + d*x))), x)
 
3.4.65.7 Maxima [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.60 (sec) , antiderivative size = 689, normalized size of antiderivative = 7.33 \[ \int \frac {1}{\sqrt {1+\cos (c+d x)} \sqrt {\sec (c+d x)}} \, dx=-\frac {\sqrt {2} \arctan \left (\frac {{\left ({\left | 2 \, e^{\left (i \, d x + i \, c\right )} + 2 \right |}^{4} + 16 \, \cos \left (d x + c\right )^{4} + 16 \, \sin \left (d x + c\right )^{4} + 8 \, {\left (\cos \left (d x + c\right )^{2} - \sin \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right ) + 1\right )} {\left | 2 \, e^{\left (i \, d x + i \, c\right )} + 2 \right |}^{2} - 64 \, \cos \left (d x + c\right )^{3} + 32 \, {\left (\cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right ) + 1\right )} \sin \left (d x + c\right )^{2} + 96 \, \cos \left (d x + c\right )^{2} - 64 \, \cos \left (d x + c\right ) + 16\right )}^{\frac {1}{4}} \sin \left (\frac {1}{2} \, \arctan \left (\frac {8 \, {\left (\cos \left (d x + c\right ) - 1\right )} \sin \left (d x + c\right )}{{\left | 2 \, e^{\left (i \, d x + i \, c\right )} + 2 \right |}^{2}}, \frac {{\left | 2 \, e^{\left (i \, d x + i \, c\right )} + 2 \right |}^{2} + 4 \, \cos \left (d x + c\right )^{2} - 4 \, \sin \left (d x + c\right )^{2} - 8 \, \cos \left (d x + c\right ) + 4}{{\left | 2 \, e^{\left (i \, d x + i \, c\right )} + 2 \right |}^{2}}\right )\right ) + 2 \, \sin \left (d x + c\right )}{{\left | 2 \, e^{\left (i \, d x + i \, c\right )} + 2 \right |}}, \frac {{\left ({\left | 2 \, e^{\left (i \, d x + i \, c\right )} + 2 \right |}^{4} + 16 \, \cos \left (d x + c\right )^{4} + 16 \, \sin \left (d x + c\right )^{4} + 8 \, {\left (\cos \left (d x + c\right )^{2} - \sin \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right ) + 1\right )} {\left | 2 \, e^{\left (i \, d x + i \, c\right )} + 2 \right |}^{2} - 64 \, \cos \left (d x + c\right )^{3} + 32 \, {\left (\cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right ) + 1\right )} \sin \left (d x + c\right )^{2} + 96 \, \cos \left (d x + c\right )^{2} - 64 \, \cos \left (d x + c\right ) + 16\right )}^{\frac {1}{4}} \cos \left (\frac {1}{2} \, \arctan \left (\frac {8 \, {\left (\cos \left (d x + c\right ) - 1\right )} \sin \left (d x + c\right )}{{\left | 2 \, e^{\left (i \, d x + i \, c\right )} + 2 \right |}^{2}}, \frac {{\left | 2 \, e^{\left (i \, d x + i \, c\right )} + 2 \right |}^{2} + 4 \, \cos \left (d x + c\right )^{2} - 4 \, \sin \left (d x + c\right )^{2} - 8 \, \cos \left (d x + c\right ) + 4}{{\left | 2 \, e^{\left (i \, d x + i \, c\right )} + 2 \right |}^{2}}\right )\right ) + 2 \, \cos \left (d x + c\right ) - 2}{{\left | 2 \, e^{\left (i \, d x + i \, c\right )} + 2 \right |}}\right ) - \arctan \left ({\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right ) + \sin \left (d x + c\right ), {\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right ) + \cos \left (d x + c\right )\right )}{d} \]

input
integrate(1/sec(d*x+c)^(1/2)/(1+cos(d*x+c))^(1/2),x, algorithm="maxima")
 
output
-(sqrt(2)*arctan2(((abs(2*e^(I*d*x + I*c) + 2)^4 + 16*cos(d*x + c)^4 + 16* 
sin(d*x + c)^4 + 8*(cos(d*x + c)^2 - sin(d*x + c)^2 - 2*cos(d*x + c) + 1)* 
abs(2*e^(I*d*x + I*c) + 2)^2 - 64*cos(d*x + c)^3 + 32*(cos(d*x + c)^2 - 2* 
cos(d*x + c) + 1)*sin(d*x + c)^2 + 96*cos(d*x + c)^2 - 64*cos(d*x + c) + 1 
6)^(1/4)*sin(1/2*arctan2(8*(cos(d*x + c) - 1)*sin(d*x + c)/abs(2*e^(I*d*x 
+ I*c) + 2)^2, (abs(2*e^(I*d*x + I*c) + 2)^2 + 4*cos(d*x + c)^2 - 4*sin(d* 
x + c)^2 - 8*cos(d*x + c) + 4)/abs(2*e^(I*d*x + I*c) + 2)^2)) + 2*sin(d*x 
+ c))/abs(2*e^(I*d*x + I*c) + 2), ((abs(2*e^(I*d*x + I*c) + 2)^4 + 16*cos( 
d*x + c)^4 + 16*sin(d*x + c)^4 + 8*(cos(d*x + c)^2 - sin(d*x + c)^2 - 2*co 
s(d*x + c) + 1)*abs(2*e^(I*d*x + I*c) + 2)^2 - 64*cos(d*x + c)^3 + 32*(cos 
(d*x + c)^2 - 2*cos(d*x + c) + 1)*sin(d*x + c)^2 + 96*cos(d*x + c)^2 - 64* 
cos(d*x + c) + 16)^(1/4)*cos(1/2*arctan2(8*(cos(d*x + c) - 1)*sin(d*x + c) 
/abs(2*e^(I*d*x + I*c) + 2)^2, (abs(2*e^(I*d*x + I*c) + 2)^2 + 4*cos(d*x + 
 c)^2 - 4*sin(d*x + c)^2 - 8*cos(d*x + c) + 4)/abs(2*e^(I*d*x + I*c) + 2)^ 
2)) + 2*cos(d*x + c) - 2)/abs(2*e^(I*d*x + I*c) + 2)) - arctan2((cos(2*d*x 
 + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arc 
tan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + sin(d*x + c), (cos(2*d*x + 
 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arcta 
n2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + cos(d*x + c)))/d
 
3.4.65.8 Giac [F]

\[ \int \frac {1}{\sqrt {1+\cos (c+d x)} \sqrt {\sec (c+d x)}} \, dx=\int { \frac {1}{\sqrt {\cos \left (d x + c\right ) + 1} \sqrt {\sec \left (d x + c\right )}} \,d x } \]

input
integrate(1/sec(d*x+c)^(1/2)/(1+cos(d*x+c))^(1/2),x, algorithm="giac")
 
output
integrate(1/(sqrt(cos(d*x + c) + 1)*sqrt(sec(d*x + c))), x)
 
3.4.65.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {1+\cos (c+d x)} \sqrt {\sec (c+d x)}} \, dx=\int \frac {1}{\sqrt {\cos \left (c+d\,x\right )+1}\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}} \,d x \]

input
int(1/((cos(c + d*x) + 1)^(1/2)*(1/cos(c + d*x))^(1/2)),x)
 
output
int(1/((cos(c + d*x) + 1)^(1/2)*(1/cos(c + d*x))^(1/2)), x)